The Truncated Tracial Moment Problem
نویسندگان
چکیده
We present tracial analogs of the classical results of Curto and Fialkow on moment matrices. A sequence of real numbers indexed by words in non-commuting variables with values invariant under cyclic permutations of the indexes, is called a tracial sequence. We prove that such a sequence can be represented with tracial moments of matrices if its corresponding moment matrix is positive semidefinite and of finite rank. A truncated tracial sequence allows for such a representation if and only if one of its extensions admits a flat extension. Finally, we apply this theory via duality to investigate trace-positive polynomials in non-commuting variables.
منابع مشابه
Trace-positive polynomials and the quartic tracial moment problem Polynômes avec une trace positive et le problème quartique des moments traciaux
The tracial analog of Hilbert’s classical result on positive binary quartics is presented: a trace-positive bivariate noncommutative polynomial of degree at most four is a sum of hermitian squares and commutators. This is applied via duality to investigate the truncated tracial moment problem: a sequence of real numbers indexed by words of degree four in two noncommuting variables with values i...
متن کاملTrace-positive polynomials, sums of hermitian squares and the tracial moment problem
A polynomial f in non-commuting variables is trace-positive if the trace of f(A) is positive for all tuples A of symmetric matrices of the same size. The investigation of trace-positive polynomials and of the question of when they can be written as a sum of hermitian squares and commutators of polynomials are motivated by their connection to two famous conjectures: The BMV conjecture from stati...
متن کاملThe tracial moment problem and trace-optimization of polynomials
The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f , what is the smallest trace f(A) can attain for a tuple of matrices A? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives effectively computable bou...
متن کاملRecurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions
In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...
متن کاملTruncated Moment Problem versus Moment Problem 3
It is shown that the truncated multidimensional moment problem is more general than the full multidimensional moment problem.
متن کامل